Microstructure design of biodegradable scaffold and its effect on tissue regeneration.

نویسندگان

  • Yuhang Chen
  • Shiwei Zhou
  • Qing Li
چکیده

Biodegradable scaffolds play a critical role in therapeutic tissue engineering, in which the matrix degradation and tissue ingrowth are of particular importance for determining the ongoing performance of tissue-scaffold system during regenerative process. This paper aims to explore the mechanobiological process within biodegradable scaffolds, where the representative volume element (RVE) is extracted from periodic scaffold micro-architectures as a base-cell design model. The degradation of scaffold matrix is modeled in terms of a stochastic hydrolysis process enhanced by diffusion-controlled autocatalysis; and the tissue ingrowth is modeled through the mechano-regulatory theory. By using the finite element based homogenization technique and topology optimization approach, the effective properties of various periodic scaffold structures are obtained. To explore the effect of scaffold design on the mechanobiological evolutions of tissue-scaffold systems, different scaffold architectures are considered for polymer degradation and tissue regeneration. It is found that the different tissues can grow into the degraded voids inside the polymer matrix. It is demonstrated that the design of scaffold architecture has a considerable impact on the tissue regeneration outcome, which exhibits the importance of implementing different criteria in scaffold micro-structural design, before being fabricated via rapid prototyping technique, e.g. solid free-form fabrication (SFF). This study models such an interactive process of scaffold degradation and tissue growth, thereby providing some new insights into design of biodegradable scaffold micro-architecture for tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma

Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...

متن کامل

Design and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma

Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...

متن کامل

Human gingival fibroblasts culture in an autologous scaffold and assessing its effect on augmentation of attached gingiva in a pilot clinical trial

BACKGROUND AND AIM: An important goal of periodontal plastic surgery is the creation of attached gingiva around the teeth. In this study, the aims were to culture gingival fibroblasts in a biodegradable scaffold and measure the width of attached gingiva after the clinical procedure.METHODS: This study was carried out on 4 patients (8 sites), with inadequate attached gingiva next to at least two...

متن کامل

X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is ...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 32 22  شماره 

صفحات  -

تاریخ انتشار 2011